Ab Initio/IGLO/GIAO-MP2 Study of Hypercoordinate Square-Pyramidal Carbocations ${ }^{1}$

G. K. Surya Prakash,* Golam Rasul, and George A. Olah*
Donald P. and Katherine B. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

Received: July 29, 1997; In Final Form: October 22, 1997

Abstract

The structures of hypercoordinate square-pyramidal carbocations were calculated at the correlated MP2/6$31 G^{*}$ level. The ${ }^{13} \mathrm{C}$ NMR chemical shifts of the cations were also calculated using IGLO and GIAO-MP2 methods. The IGLO calculated data show only a reasonable correlation with the experimental ${ }^{13} \mathrm{C}$ NMR chemical shifts. The correlated GIAO-MP2 calculated ${ }^{13} \mathrm{C}$ NMR shifts, however, showed significant improvements over the SCF IGLO calculated chemical shifts. It was also found that among the $\mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}$isomers, the bishomo square-pyramidal cation 7 is only $0.2 \mathrm{kcal} / \mathrm{mol}$ more stable than the trishomocyclopropeniumtype ion $\mathbf{8}$ at the MP4(SDQ)/6-31G*//MP2/6-31G $*+$ ZPE level. Almost a calculated $1: 2$ equilibrium mixture of ions $\mathbf{7}$ and $\mathbf{8}$ seems to best represent the experimental NMR spectrum of $\mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}$at $-80{ }^{\circ} \mathrm{C}$. The structures and ${ }^{13} \mathrm{C}$ NMR chemical shifts for the elusive $(\mathrm{CH})_{5}{ }^{+} \mathbf{1}$ and its monomethyl-substituted analogues $\mathbf{2}$ and $\mathbf{3}$ were also computed.

Introduction

Hypercoordinate square-pyramidal carbocations have been the focus of much interest and speculation over the past two decades. ${ }^{2,3}$ In 1971, Williams ${ }^{4}$ first suggested the hypercoordinate square-pyramidal structure for the $(\mathrm{CH})_{5}{ }^{+}$carbocation based on the structure of isoelectronic isostructural pentaborane. In 1972, Stohrer and Hoffmann ${ }^{5}$ concluded from a theoretical treatment using extended Hückel formalism that the energy minimum for the $(\mathrm{CH})_{5}{ }^{+}$cation does not correspond to a planar classical structure. The proposed structure was three-dimensional in the form of a square pyramid with multicenter bonding.

$(\mathrm{CH}) 5^{+}$

In the same year Masamune and co-workers ${ }^{6}$ presented experimental evidence for a dimethyl analogue $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}{ }^{+}$ in superacid solution and concluded that the structure is indeed a square pyramid, and thus, a structural and isoelectronic relationship with 1,2-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{~B}_{5} \mathrm{H}_{7}$ was established.

Although the parent cation $(\mathrm{CH})_{5}{ }^{+}$has not yet been observed experimentally, a variety of similar structures ${ }^{6-10}$ have been identified under stable ion conditions using ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR
spectroscopy. The pentagonal-pyramidal structure was observed for the $\left(\mathrm{CCH}_{3}\right)_{6}{ }^{2+}$ dication: ${ }^{11}$

The $(\mathrm{CH})_{5}{ }^{+}$cation has also been a subject of many theoretical studies first by semiempirical and later by ab initio methods. Kollman et al. ${ }^{12}$ and Dewar and co-workers reported ${ }^{13}$ CNDO and MINDO/3 studies on $(\mathrm{CH}) 5^{+}$, respectively. Ab initio calculation on capped annulene rings with six interstitial electrons was carried out by Schleyer et al. ${ }^{14,15}$ Results of this calculation show that the favorable pyramidal structure follows the Hückel-like $4 n+2$ interstitial electron rule.

We now wish to report our ab initio/IGLO/GIAO-MP2 studies of a series of square-pyramidal carbocations, which were characterized earlier by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy under long-lived stable ion conditions. This permits comparison of calculated data with the experimentally observed results. We have also calculated the structures and ${ }^{13} \mathrm{C}$ NMR chemical shifts for the still elusive $(\mathrm{CH})_{5}{ }^{+}$carbocation and its monomethyl analogues.

Results and Discussions

Ab initio calculations were carried out by using the Gaussian 94^{16} package of programs. Geometries were optimized at the HF/6-31G* and MP2/6-31G* levels. Vibrational frequencies at the HF/6-31G*//HF/6-31G* level were used to characterize stationary points as minima and to evaluate zero-point vibrational energies (ZPE). For some of the cations single-point energies at the MP4(SDQ)/6-31G* level on MP2/6-31G*

Figure 1. MP2/6-31G* optimized structures of $\mathbf{1 - 1 0}$.
geometries were calculated. Selected parameters of the ions at the MP2/6-31G* level are given in Figure 1. IGLO calculations were performed according to a reported method ${ }^{17-19}$ at IGLO DZ and II levels using MP2/6-31G* geometries. Huzinaga ${ }^{20 a}$ Gaussian lobes were used as follows. Basis DZ: C, 7s3p contracted to [4111, 21]; H, 3s contracted to [21]. Basis II: C, 9 s 5 p 1 d contracted to [51111, 2111, 1]; d exponent, 1.0; H, 5s1p contracted to [311, 1]; p exponent, 0.70 . GIAO-MP2 calculations using $3-21 \mathrm{G},{ }^{20 \mathrm{~b}} \mathrm{dzp} / \mathrm{dz},{ }^{21,22}$ and tzp/dz basis sets ${ }^{21,22}$ on MP2/6-31G* geometries have been performed with the ACES II program. ${ }^{23}$ Relevent computed and reported chemical shifts are listed in Table 1.

Square-Pyramidal Carbocations. $(\mathrm{CH})_{5}{ }^{+} 1, \mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}^{+}$2, $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}^{+}$3, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}{ }^{+}$4, and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}{ }^{+}$5. The parent square-pyramidal ion $\mathbf{1}$ has not yet been observed. The MP2/

TABLE 1: Calculated and Experimental ${ }^{13}$ C NMR Chemical Shifts ${ }^{a}$

no.	position	atom	IGLO		GIAO-MP2			exptl
			DZ ${ }^{b}$	II ${ }^{\text {b }}$	3-21G	dzp/dz	tzp/dz ${ }^{\text {b }}$	
1	apical	C1	-36.2	-52.0	-34.1	-35.3	-37.4	
	basal	C2	78.4	62.7	65.9	68.3	71.5	
2	apical	C1	-36.7	-44.9	-28.9	-26.3		
	basal	C2	76.7	63.4	66.7	70.0		
		C3	80.3	66.9	69.2	72.9		
		C4	83.9	70.5	71.7	75.8		
	other	C6	3.6	-0.8	5.4	3.4		
3	apical	C1	-33.6	-47.7	-29.8	-30.4		
	basal	C2	93.4	83.4	83.2	89.8		
		C3	77.8	62.8	66.5	68.6		
		C4	70.2	53.8	58.1	59.7		
	other	C6	10.0	5.6	12.3	10.2		
4	apical	C1	-34.6	-41.2	-25.4			-23.0
	basal	C2	90.4	81.6	82.2			93.7
		C3	79.4	66.5	69.4			73.0
		C4	75.0	61.5	64.0			61.0
	other	C6	9.5	5.3	12.0			7.5
		C7	2.8	-2.2	4.4			-1.0
5	apical	C1	-33.3	-38.6	-21.9			-20.9
	basal	C2	84.0	75.2	76.1			78.5
		C3 ${ }^{\text {b }}$	79.3	67.0	70.3			72.6
	other	C6	8.5	4.2	11.5			5.4
		C8	1.6	-3.4	3.2			-3.2
6	apical	C1	-36.2	-36.9	-15.1	-17.3	-17.0	-17.2
	basal	C2	43.0	35.9	37.9	40.3	41.9	39.4
	other	C3	6.5	4.8	12.7	9.8	5.0	8.1
7	apical	C1	-41.1	-48.1	-23.7	-28.9		2.4
	basal	C2	48.1	36.2	38.9	40.3		30.4
	other	C3	24.9	20.3	30.5	29.4		29.0
		C8	40.8	38.1	44.4	47.1		41.7
8		C1	18.2	0.2	14.1			
		C2	20.4	7.9	16.4			
		C3	16.6	10.5	18.7			
		C5	32.5	24.7	32.9			
		C6	36.2	31.4	39.6			
		C8	36.3	33.8	40.7			
9	apical	C1	-43.2	-47.8	-24.0	-28.6		-27.9
	basal	C2	42.4	34.6	36.6	38.8		37.7
	other	C3	8.0	10.0	17.5	16.9		14.9
		C8	9.5	11.6	16.4	17.0		14.2
10	apical	C1	-49.1	-54.2	-29.3	-35.6		-33.6
	basal	C2	42.3	34.6	36.0	38.3		35.3
	other	C3	13.4	11.8	21.2	20.6		17.5
		C8	141.3	139.7	112.6	124.7		129.9

${ }^{a}$ Calculated ${ }^{13} \mathrm{C}$ NMR chemical shifts were performed on MP2/6$31 \mathrm{G}^{*}$ optimized geometries and referenced to TMS (absolute shift, i.e., $\sigma(\mathrm{C})=222.6$ (IGLO DZ), 197.4 (IGLO II), 218.7 (GIAO-MP2/3-21G), 205.7 (GIAO-MP2/dzp/dz), 198.8 (GIAO-MP2/tzp/dz)). For numbering scheme, see Figure 1. ${ }^{b}$ Average calculated values of C 3 and C 5 .
$6-31 \mathrm{G}^{*}$ optimized structure of $\mathbf{1}$ is shown in Figure 1. The calculated apical carbon-basal carbon bond length of $1.566 \AA$ is $0.1 \AA$ longer than basal carbon-basal carbon bond length (1.465 Å).

Earlier calculations of the ion $\mathbf{1}$ at the $\mathrm{HF} / 3-21 \mathrm{G}$ level showed the corresponding bond lengths to be 1.589 and $1.477 \AA$, respectively. ${ }^{15}$ In structure $\mathbf{1}$ the apical carbon is bonded to the four carbon atoms and a hydrogen atom by sharing only eight valence electrons. Thus, the electron-deficient apical carbon-basal carbon bonds are as anticipated longer than basal carbon-basal carbon bonds. The IGLO DZ calculated ${ }^{13} \mathrm{C}$ NMR chemical shifts of the apical and basal carbons of $\mathbf{1}$ are

SCHEME 1

$\boldsymbol{\delta}^{13} \mathrm{C}-36.2$ and 78.4 , respectively. The IGLO calculations using a larger basis set (i.e., basis II) gave chemical shifts of $\boldsymbol{\delta}^{13} \mathrm{C}-52.0$ and 62.7 significantly different from the corresponding IGLO DZ values. It is known ${ }^{24}$ that IGLO provides relatively poor data in calculations of ${ }^{13} \mathrm{C}$ NMR chemical shift of tertiary carbons. Thus, correlated calculations using the GIAO-MP2 method showed significant effect on the ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathbf{1}$. GIAO-MP2 calculations using the 3-21G basis set (i.e., GIAO-MP2/3-21G) gave corresponding values of $\boldsymbol{\delta}^{13} \mathrm{C}$ of -34.1 and 65.9. However, GIAO-MP2 calculations using a larger dzp/dz basis set (i.e., GIAO-MP2/dzp/dz; dzp basis set for carbons and dz basis set for hydrogens) gave $\boldsymbol{\delta}^{13} \mathrm{C}$ of -35.3 and 68.3 only slightly different from those of GIAO-MP2/3-21G values. By use of an even larger tzp/dz basis set (i.e., GIAO-MP2/tzp/dz; tzp basis set for carbons and dz basis set for hydrogens), the calculated $\boldsymbol{\delta}^{13} \mathrm{C}$ of -37.4 and 71.5 are also very close to those of the corresponding GIAO-MP2/321 G and GIAO-MP2/dzp/dz results.

The monomethyl-substituted analogues of $\mathbf{1}$, that is, C1 (apical) substituted 2 and C2 (basal) substituted 3, have also not been observed. The structures of the cations were fully optimized at the MP2/6-31G* level (Figure 1). The cation 2 was found to be only $1.7 \mathrm{kcal} / \mathrm{mol}$ less stable than 3 at the MP4-(SDQ)/6-31G*//MP2/6-31G* level. The ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathbf{2}$ and $\mathbf{3}$ were calculated and are compiled in Table 1.

The 1,2 -dimethyl-substituted analogue of $\mathbf{1}$, that is, $\mathbf{4}$, was observed ${ }^{6}$ as a long-lived ion and characterized by ${ }^{13} \mathrm{C}$ NMR spectroscopy. The 2,4 -dimethyl-substituted analogue of $\mathbf{1}$ was not observed experimentally. The MP2/6-31G* optimized geometry of $\mathbf{4}$ is similar to that of $\mathbf{1}$. The GIAO-MP2/3-21G calculated $\delta^{13} \mathrm{C}$ of the apical carbon of 4 is -25.4 , which is very close to the experimental value of $\delta^{13} \mathrm{C}-23.0$. However, GIAO-MP2/3-21G calculated $\delta^{13} \mathrm{C}$ of the basal carbons (82.2, 69.4, and 64.0) slightly deviate from the experimental data (93.7, 73.0, and 61.0). GIAO-MP2 calculations using larger basis sets, however, were not possible. This is because calculations using the ACES II program ${ }^{23}$ are presently limited to only to smallersized molecules (limits strongly dependent on molecular symmetry).

Trimethyl analogue 5 was also characterized ${ }^{7}$ in superacid solutions by ${ }^{13} \mathrm{C}$ NMR spectroscopy. The MP2/6-31G* optimized geometry of $\mathbf{5}$ is expectedly similar to that of $\mathbf{4}$. As in 4, the GIAO-MP2/3-21G calculated $\delta^{13} \mathrm{C}$ of the apical carbon of $\mathbf{5}$ is -21.9 , which is very close to the experimental value of $\delta{ }^{13} \mathrm{C}-20.9$. GIAO-MP2/3-21G calculated $\delta^{13} \mathrm{C}$ of the basal carbons of 5 (76.1 and 70.3) also corresponds very closely to the observed experimental values (78.5 and 72.6).

Bishomo Square-Pyramidal Cations. $\mathrm{C}_{7} \mathrm{H}_{9}{ }^{+}$6. The bishomo square-pyramidal ion 6 was originally prepared by Masamune et al. ${ }^{8}$ in superacid $\mathrm{SbF}_{5}-\mathrm{SO}_{2} \mathrm{ClF}$ solution at -110 ${ }^{\circ} \mathrm{C}$. The MP2/6-31G* optimized structure of $\mathbf{6}$ is given in Figure 1. We also searched for minimum-energy trishomocyclopro-penium-type structure (Scheme 1). At the MP2/6-31G* level the structure is not a minimum on the potential-energy surface of $\mathrm{C}_{7} \mathrm{H}_{9}{ }^{+}$and converged into structure $\mathbf{6}$ upon optimization. The parent persistent trishomocyclopropenium ion was also prepared by Masamune et al. ${ }^{26}$ in superacid solutions and characterized

SCHEME 2

by ${ }^{13} \mathrm{C}$ NMR spectroscopy. The trishomocyclopropenium ion was also studied by an ab initio/IGLO method by Prakash et al., ${ }^{26}$ and its highly symmetrical $C_{3 v}$ structure was confirmed.

The ${ }^{13} \mathrm{C}$ NMR chemical shifts of 6 were calculated by the both IGLO and GIAO-MP2 methods. The IGLO II calculated $\delta^{13} \mathrm{C}$ of the apical carbon of -36.9 deviates substantially from the experimental value by -17.2 ppm . However, GIAO-MP2/ $\mathrm{dzp} / \mathrm{dz}$ calculated $\delta^{13} \mathrm{C}$ of the apical carbon of -17.3 is almost the same as the experimental value of -17.2 . These comparisons clearly demonstrate the importance of electron correlations in the calculations of the ${ }^{13} \mathrm{C}$ chemical shift of the squarepyramidal carbocations. The GIAO-MP2/dzp/dz calculated $\delta^{13} \mathrm{C}$ of the basal carbon of 40.3 ppm is also found to be very close to the experimental value of 39.4 ppm . With the larger tzp/dz basis set the GIAO-MP2 calculated $\delta^{13} \mathrm{C}$ of the apical and basal carbons of 6 are -17.0 and 41.9 , respectively, which are only slightly different from those of GIAO-MP2/dzp/dz values.
$\mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}, 7$ and 8 . The $\mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}$ion was prepared by Masamune et al. ${ }^{9}$ in superacid solution. Jefford and co-workers ${ }^{27}$ calculated the ion at the MINDO/3 level. Unlike $\mathrm{C}_{7} \mathrm{H}_{9}{ }^{+}$, both the bishomo square-pyramidal 7 and the trishomocyclopropenium-type structure $\mathbf{8}$ were found to be minimum-energy structures on the potential-energy surface of $\mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}$at the $\mathrm{HF} / / 6-31 \mathrm{G}^{*}$ level as confirmed by the frequency calculations at the same level. The structures were further optimized at the MP2/6-31G* level. At the MP2/6-31G*//MP2/6-31G* level 7 is only $0.7 \mathrm{kcal} / \mathrm{mol}$ less stable than 8. This difference is reduced to $0.1 \mathrm{kcal} / \mathrm{mol}$ at the higher MP4(SDQ)/6-31G*//MP2/6-31G* level. By inclusion of zero-point vibrational energies (ZPE), that is, at the MP4-(SDQ)/6-31G*//MP2/6-31G* + ZPE (at the HF/6-31G*//HF/ $6-31 \mathrm{G}^{*}$ level scaled by a factor of 0.89), 7 is only $0.2 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathbf{8}$. Thus, structures $\mathbf{7}$ and $\mathbf{8}$ are almost isoenergetic.

The ${ }^{13} \mathrm{C}$ NMR chemical shifts of 7 were calculated by the both IGLO and GIAO-MP2 methods. The IGLO II calculated $\delta^{13} \mathrm{C}$ of the apical carbon of -48.1 largely deviates from the experimental value by 2.4 ppm . The GIAO-MP $2 / \mathrm{dzp} / \mathrm{dz}$ calculated $\delta^{13} \mathrm{C}$ of the apical carbon of -28.9 also deviates from the experimental value by 31.3 ppm .

The ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathbf{8}$ were calculated at the GIAO-MP2/3-21G level. The calculated $\delta^{13} \mathrm{C}$ values of $\mathbf{8}$ are given in Table 1. From calculated chemical shifts of $\mathbf{7}$ and $\mathbf{8}$ it seems that the ion 7 might not be the only species involved in superacid solutions. An equilibrium mixture (undergoing rapid exchange on the NMR time scale) (Scheme 2) involving ions 7 and $\mathbf{8}$ (in 1:2 ratio) can best represent the structure of $\mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}$. The calculated average chemical shifts (at the GIAO-MP2/3-21G level) of the equilibrating structures of Scheme 2 are depicted in Scheme 3 along with the experimental data obtained at $-80^{\circ} \mathrm{C}$ (in parentheses). Thus, the calculated $\delta^{13} \mathrm{C}$ of $\mathrm{C} 1-\mathrm{C} 4$ are $1.5,29.4,29.6$, and 41.9 , respectively, and match very well with the corresponding experimental values of 2.4 , $30.4,29.0$, and 41.7. The possibility of structures $\mathbf{7}$ and $\mathbf{8}$ in rapid equilibrium is not only indicated from their average chemical shifts but also from their nearly identical energies. In

Figure 2. Plot of calculated vs experimental ${ }^{13} \mathrm{C}$ NMR chemical shifts of hypercoordinate carbocations 4-6, 9, and 10: (a) IGLO DZ vs experimental results; (b) IGLO II vs experimental results; (c) GIAO-MP2/3-21G vs experimental results; (d) GIAO-MP2/dzp/dz vs experimental results.

SCHEME 3

fact, such an equilibrium was also suggested by Masamune et al. ${ }^{9} \mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}$also showed ${ }^{28}$ chemical behavior different from that of other related ions.

The relative instability of the ions 7 can also be justified from the molecular-orbital picture. The overlap between the p orbitals of the cap and the p orbitals of the 1,4 cyclohexadiene ring decreases with the bending of the p orbitals away from the cap. Therefore, the good overlap between cap p orbital and 1,4 cyclohexadiene p orbitals in ion 6 is possible because of the right geometry. However, in ion 7, since the 3,6-positions of the cyclohexadiene moiety is tied (constrained) to a methylene group, the corresponding p orbitals cannot easily bend toward

SCHEME 4

good overlap

poor overlap
the cap to make a good overlap (Scheme 4; only part of the structures are shown for simplicity).
$\mathrm{C}_{9} \mathrm{H}_{11}+9$ and $\mathrm{C}_{9} \mathrm{H}_{9}{ }^{+}$10. Both ions 9 and $\mathbf{1 0}$ were prepared by Coates et al. ${ }^{10}$ in superacid $\mathrm{SbF}_{5}-\mathrm{SO}_{2} \mathrm{ClF}$ solutions between -100 and $-130{ }^{\circ} \mathrm{C}$. The MP2/6-31G* optimized $C_{2 v}$ symmetrical structures of $\mathbf{9}$ and $\mathbf{1 0}$ are anticipated to be similar in nature (see Figure 1). Unlike in 7, in ions 9 and 10 the 3,6positions of the cyclohexadiene moiety are tied to two methylene and two methyne groups, respectively. Thus, p orbitals of the cyclohexadiene moieties of $\mathbf{9}$ and $\mathbf{1 0}$ can bend toward the cap, thus stabilizing the cationic center. However, no minimumenergy trishomocyclopropenium-type structures (Scheme 5) for $\mathrm{C}_{9} \mathrm{H}_{11}{ }^{+}$or $\mathrm{C}_{9} \mathrm{H}_{9}{ }^{+}$could be located. At the MP2/6-31G* level

SCHEME 5

trishomocyclopropenium structure of $\mathrm{C}_{9} \mathrm{H}_{11}{ }^{+}$

trishomocyclopropenium structure of $\mathrm{CgH}_{9}{ }^{+}$
the structures are not minima on the potential-energy surfaces and converged into corresponding pyramidal (i.e., 9 and 10) structures upon optimization.

The GIAO-MP2/dzp/dz calculated $\delta^{13} \mathrm{C}$ values of the apical carbons of $\mathbf{9}$ and $\mathbf{1 0}$ are -28.6 and -35.6 , respectively. These values compare very well with the corresponding experimental results of $\delta^{13} \mathrm{C}-27.9$ and -33.6 , respectively. Similarly, the GIAO-MP2 $/ \mathrm{dzp} / \mathrm{dz}$ calculated $\delta^{13} \mathrm{C}$ of both basal carbons of 9 and $\mathbf{1 0}$ are 38.8 and 38.3 , respectively, which also compare very well with the experimental data of 37.7 and 35.3 ppm , respectively.

Chemical-Shift Correlation. Both IGLO and GIAO-MP2 calculated ${ }^{13} \mathrm{C}$ NMR chemical shifts of the hypercoordinate carbocations correlate very well with the experimental data (Figure 2). However, only the GIAO-MP2 calculated individual ${ }^{13} \mathrm{C}$ NMR chemical shifts are in excellent agreement with experimental results (Table 1) and are clearly superior to the IGLO calculated ${ }^{13} \mathrm{C}$ NMR chemical shifts.

Conclusions

We have calculated the structures and ${ }^{13} \mathrm{C}$ NMR chemical shifts of a series of hypercoordinate square-pyramidal carbocations that were earlier characterized by ${ }^{13} \mathrm{C}$ NMR spectroscopy under long-lived stable ion conditions by ab initio calculations. IGLO calculations with either the DZ or II basis set were found to be only reasonable in reproducing the ${ }^{13} \mathrm{C}$ NMR chemical shifts of these ions. However, calculations of ${ }^{13} \mathrm{C}$ NMR chemical shifts of these ions with the correlated GIAO-MP2 method showed significant improvements over the chemicalshift results computed at the SCF level (IGLO methods). The calculations suggest that 7 is nearly identical in energy with isomeric ion 8. An almost 1:2 equilibrium mixture of ions 7 and $\mathbf{8}$ seems to best represent the observed NMR data of $\mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}$ at $-80^{\circ} \mathrm{C}$. The structures and ${ }^{13} \mathrm{C}$ NMR chemical shifts for the elusive $(\mathrm{CH})_{5}{ }^{+}$ion $\mathbf{1}$ and its monomethyl-substituted analogues $\mathbf{2}$ and $\mathbf{3}$ were also computed.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

Supporting Information Available: Listing of Cartesian coordinates of the MP2/6-31G* optimized geometries and
energies at the MP2/6-31G*//MP2/6-31G* level for $\mathbf{1 - 1 0}$ (4 pages). Ordering information is given on any current masthead page.

References and Notes

(1) Stable Carbocations Part 304. For Part 303, see the following. Olah, G. A.; Shamma, T.; Burrichter, A.; Rasul, G.; Prakash, G. K. S. J. Am. Chem. Soc. 1997, 119, 12923.
(2) Olah, G. A.; Prakash, G. K. S.; Williams, R. E.; Field, L. D.; Wade, K. Hypercarbon Chemistry; Wiley-Interscience: New York, 1987.
(3) Schwarz, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 991.
(4) Williams, R. E. Inorg. Chem. 1971, 10, 210.
(5) Stohrer, W. D.; Hoffmann, R. J. Am. Chem. Soc. 1972, 94, 1661.
(6) Masamune, S.; Sakai, M.; Ona, H.; Kemp-Jones, A. V. J. Am. Chem. Soc. 1972, 94, 8956.
(7) Minkin, V. I.; Zefirov, N. S.; Korobov, M. S.; Averina, N. V.; Boganov, A. M.; Nivorozhkin, L. E. Zh. Org. Khim. 1981, 17, 2616.
(8) Masamune, S.; Sakai, M.; Kemp-Jones, A. V.; Ona, H.; Venot, A.; Nakashima, T. Angew. Chem., Int. Ed. Engl. 1973, 12, 769.
(9) Kemp-Jones, A. V.; Nakamura, N.; Masamune, S. J. Chem. Soc., Chem. Commun. 1974, 109.
(10) Coates, R. M.; Fretz, E. R. Tetrahedron Lett. 1972, 23, 2289.
(11) Hogeveen, H.; Kwant, P. W. Acc. Chem. Res. 1975, 8, 413.
(12) Kollmar, H.; Smith, H. O.; Schleyer, P. v. R. J. Am. Chem. Soc. 1973, 95, 5834.
(13) Dewar, M. J.; Haddon, R. C. J. Am. Chem. Soc. 1973, 95, 5836.
(14) Hehre, W. J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1973, 95, 5837.
(15) Jemmis, E. D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1982, 104, 4781.
(16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.: Pittsburgh, PA, 1995.
(17) Kutzelnigg, W. Isr. J. Chem. 1980, 19, 193.
(18) Schindler, M.; Kutzelnigg, W. J. Chem. Phys. 1982, 76, 1919.
(19) Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR: Basic Princ. Prog. 1991, 91, 651.
(20) (a) Huzinaga, S. Approximate Atomic Wave Function; University of Alberta: Edmonton, Alberta, 1971. (b) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.
(21) Gauss, J. Chem. Phys. Lett. 1992, 191, 614.
(22) Gauss, J. J. Chem. Phys. 1993, 99, 3629.
(23) Stanton, J. F.; Gauss, J.; Watts, J. D.; Lauderdale, W. J.; Bartlett, R. J. ACES II; Stanton, J. F., Gauss, J., Watts, J. D., Lauderdale, W. J., Bartlett, R. J., Eds.; Quantum Theory Project, University of Florida: Gainesville, FL, 1991.
(24) Sieber, S.; Schleyer, P. V.; Gauss, J. J. Am. Chem. Soc. 1993, 115, 6987.
(25) Masamune, S.; Sakai, M.; Kemp-Jones, A. V.; Nakashima, T. Can. J. Chem. 1974, 52, 855.
(26) Prakash, G. K. S.; Rasul, G.; Yudin, A. K.; Olah, G. A. Gazz. Chim. Ital. 1996, 126, 1.
(27) Jefford, C. W.; Mareda, J.; Perlberger, J.-C.; Burger, U. J. Am. Chem. Soc. 1979, 101, 1370.
(28) Hart, H.; Kuzuya, M. J. Am. Chem. Soc. 1974, 96, 6436.

