Ab Initio/IGLO/GIAO-MP2 Study of Hypercoordinate Square-Pyramidal Carbocations¹

G. K. Surya Prakash,* Golam Rasul, and George A. Olah*

Donald P. and Katherine B. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

Received: July 29, 1997; In Final Form: October 22, 1997

The structures of hypercoordinate square-pyramidal carbocations were calculated at the correlated MP2/6-31G* level. The ¹³C NMR chemical shifts of the cations were also calculated using IGLO and GIAO-MP2 methods. The IGLO calculated data show only a reasonable correlation with the experimental ¹³C NMR chemical shifts. The correlated GIAO-MP2 calculated ¹³C NMR shifts, however, showed significant improvements over the SCF IGLO calculated chemical shifts. It was also found that among the C₈H₉⁺ isomers, the bishomo square-pyramidal cation **7** is only 0.2 kcal/mol more stable than the trishomocyclopropenium-type ion **8** at the MP4(SDQ)/6-31G*//MP2/6-31G* + ZPE level. Almost a calculated 1:2 equilibrium mixture of ions **7** and **8** seems to best represent the experimental NMR spectrum of C₈H₉⁺ at -80 °C. The structures and ¹³C NMR chemical shifts for the elusive (CH)₅⁺ **1** and its monomethyl-substituted analogues **2** and **3** were also computed.

Introduction

Hypercoordinate square-pyramidal carbocations have been the focus of much interest and speculation over the past two decades.^{2,3} In 1971, Williams⁴ first suggested the hypercoordinate square-pyramidal structure for the $(CH)_5^+$ carbocation based on the structure of isoelectronic isostructural pentaborane. In 1972, Stohrer and Hoffmann⁵ concluded from a theoretical treatment using extended Hückel formalism that the energy minimum for the $(CH)_5^+$ cation does not correspond to a planar classical structure. The proposed structure was three-dimensional in the form of a square pyramid with multicenter bonding.

In the same year Masamune and co-workers⁶ presented experimental evidence for a dimethyl analogue $(CH_3)_2C_5H_3^+$ in superacid solution and concluded that the structure is indeed a square pyramid, and thus, a structural and isoelectronic relationship with 1,2-(CH₃)_2B_5H_7 was established.

Although the parent cation $(CH)_5^+$ has not yet been observed experimentally, a variety of similar structures^{6–10} have been identified under stable ion conditions using ¹³C and ¹H NMR spectroscopy. The pentagonal-pyramidal structure was observed for the $(CCH_3)_6^{2+}$ dication:¹¹

The (CH)₅⁺ cation has also been a subject of many theoretical studies first by semiempirical and later by ab initio methods. Kollman et al.¹² and Dewar and co-workers reported¹³ CNDO and MINDO/3 studies on (CH)₅⁺, respectively. Ab initio calculation on capped annulene rings with six interstitial electrons was carried out by Schleyer et al.^{14,15} Results of this calculation show that the favorable pyramidal structure follows the Hückel-like 4n + 2 interstitial electron rule.

We now wish to report our ab initio/IGLO/GIAO-MP2 studies of a series of square-pyramidal carbocations, which were characterized earlier by ¹H and ¹³C NMR spectroscopy under long-lived stable ion conditions. This permits comparison of calculated data with the experimentally observed results. We have also calculated the structures and ¹³C NMR chemical shifts for the still elusive (CH)₅⁺ carbocation and its monomethyl analogues.

Results and Discussions

Ab initio calculations were carried out by using the Gaussian 94¹⁶ package of programs. Geometries were optimized at the HF/6-31G* and MP2/6-31G* levels. Vibrational frequencies at the HF/6-31G*//HF/6-31G* level were used to characterize stationary points as minima and to evaluate zero-point vibrational energies (ZPE). For some of the cations single-point energies at the MP4(SDQ)/6-31G* level on MP2/6-31G*

S1089-5639(97)02470-5 CCC: \$15.00 © 1998 American Chemical Society Published on Web 03/20/1998

Figure 1. MP2/6-31G* optimized structures of 1-10.

9 (C2v)

geometries were calculated. Selected parameters of the ions at the MP2/6-31G* level are given in Figure 1. IGLO calculations were performed according to a reported method¹⁷⁻¹⁹ at IGLO DZ and II levels using MP2/6-31G* geometries. Huzinaga^{20a} Gaussian lobes were used as follows. Basis DZ: C, 7s3p contracted to [4111, 21]; H, 3s contracted to [21]. Basis II: C, 9s5p1d contracted to [51111, 2111, 1]; d exponent, 1.0; H, 5s1p contracted to [311, 1]; p exponent, 0.70. GIAO-MP2 calculations using 3-21G,^{20b} dzp/dz,^{21,22} and tzp/dz basis sets^{21,22} on MP2/6-31G* geometries have been performed with the ACES II program.²³ Relevent computed and reported chemical shifts are listed in Table 1.

10 (C2v)

Square-Pyramidal Carbocations. $(CH)_5^+ 1$, $CH_3C_5H_4^+ 2$, $CH_3C_5H_4^+ 3$, $(CH_3)_2C_5H_3^+ 4$, and $(CH_3)_3C_5H_2^+ 5$. The parent square-pyramidal ion 1 has not yet been observed. The MP2/

 TABLE 1: Calculated and Experimental ¹³C NMR Chemical Shifts^a

			IGLO		GIAO-MP2			
no.	position	atom	DZ^b	Π^b	3-21G	dzp/dz	tzp/dz^b	exptl
1	apical	C1	-36.2	-52.0	-34.1	-35.3	-37.4	
	basal	C2	78.4	62.7	65.9	68.3	71.5	
2	apical	C1	-36.7	-44.9	-28.9	-26.3		
	basal	C2	76.7	63.4	66.7	70.0		
		C3	80.3	66.9	69.2	72.9		
	o the out	C4	83.9	/0.5	/1./	/5.8		
2	other		22.6	-0.8	-20.8	-20.4		
3	basal	C_2	-33.0	-47.7	-29.8	-30.4		
	Uasai	C_2	77.8	62.8	66.5	68.6		
		C_{1}	70.2	53.8	58.1	59.7		
	other	C4 C6	10.0	5.6	12.3	10.2		
4	anical	C1	-34.6	-41.2	-25.4	10.2		-23.0
-	basal	C2	90.4	81.6	82.2			93.7
	ousu	C3	79.4	66.5	69.4			73.0
		C4	75.0	61.5	64.0			61.0
	other	C6	9.5	5.3	12.0			7.5
		C7	2.8	-2.2	4.4			-1.0
5	apical	C1	-33.3	-38.6	-21.9			-20.9
	basal	C2	84.0	75.2	76.1			78.5
		$C3^{b}$	79.3	67.0	70.3			72.6
	other	C6	8.5	4.2	11.5			5.4
		C8	1.6	-3.4	3.2		. = .	-3.2
6	apical	Cl	-36.2	-36.9	-15.1	-17.3	-17.0	-17.2
	basal	C2	43.0	35.9	37.9	40.3	41.9	39.4
-	other	C3	6.5	4.8	12.7	9.8	5.0	8.1
/	apical	Cl	-41.1	-48.1	-23.7	-28.9		2.4
	other	C_2	48.1	20.2	20.5	40.5		20.0
	other		24.9 40.8	20.5	50.5 44.4	29.4 47.1		29.0 41.7
8		C_1	18.2	0.2	1/ 1	47.1		41.7
0		C^2	20.4	7.9	16.4			
		C_{3}^{2}	16.6	10.5	18.7			
		C5	32.5	24.7	32.9			
		C6	36.2	31.4	39.6			
		Č8	36.3	33.8	40.7			
9	apical	C1	-43.2	-47.8	-24.0	-28.6		-27.9
	basal	C2	42.4	34.6	36.6	38.8		37.7
	other	C3	8.0	10.0	17.5	16.9		14.9
		C8	9.5	11.6	16.4	17.0		14.2
10	apical	C1	-49.1	-54.2	-29.3	-35.6		-33.6
	basal	C2	42.3	34.6	36.0	38.3		35.3
	other	C3	13.4	11.8	21.2	20.6		17.5
		C8	141.3	139.7	112.6	124.7		129.9

^{*a*} Calculated ¹³C NMR chemical shifts were performed on MP2/6-31G* optimized geometries and referenced to TMS (absolute shift, i.e., σ (C) = 222.6 (IGLO DZ), 197.4 (IGLO II), 218.7 (GIAO-MP2/3-21G), 205.7 (GIAO-MP2/dzp/dz), 198.8 (GIAO-MP2/tzp/dz)). For numbering scheme, see Figure 1. ^{*b*}Average calculated values of C3 and C5.

 $6-31G^*$ optimized structure of **1** is shown in Figure 1. The calculated apical carbon-basal carbon bond length of 1.566 Å is 0.1 Å longer than basal carbon-basal carbon bond length (1.465 Å).

Earlier calculations of the ion **1** at the HF/3-21G level showed the corresponding bond lengths to be 1.589 and 1.477 Å, respectively.¹⁵ In structure **1** the apical carbon is bonded to the four carbon atoms and a hydrogen atom by sharing only eight valence electrons. Thus, the electron-deficient apical carbon–basal carbon bonds are as anticipated longer than basal carbon–basal carbon bonds. The IGLO DZ calculated ¹³C NMR chemical shifts of the apical and basal carbons of **1** are

SCHEME 2

ion

 δ^{13} C -36.2 and 78.4, respectively. The IGLO calculations using a larger basis set (i.e., basis II) gave chemical shifts of δ^{13} C -52.0 and 62.7 significantly different from the corresponding IGLO DZ values. It is known²⁴ that IGLO provides relatively poor data in calculations of ¹³C NMR chemical shift of tertiary carbons. Thus, correlated calculations using the GIAO-MP2 method showed significant effect on the ¹³C NMR chemical shifts of 1. GIAO-MP2 calculations using the 3-21G basis set (i.e., GIAO-MP2/3-21G) gave corresponding values of δ^{13} C of -34.1 and 65.9. However, GIAO-MP2 calculations using a larger dzp/dz basis set (i.e., GIAO-MP2/dzp/dz; dzp basis set for carbons and dz basis set for hydrogens) gave δ^{13} C of -35.3 and 68.3 only slightly different from those of GIAO-MP2/3-21G values. By use of an even larger tzp/dz basis set (i.e., GIAO-MP2/tzp/dz; tzp basis set for carbons and dz basis set for hydrogens), the calculated δ^{13} C of -37.4 and 71.5 are also very close to those of the corresponding GIAO-MP2/3-21G and GIAO-MP2/dzp/dz results.

The monomethyl-substituted analogues of **1**, that is, C1 (apical) substituted **2** and C2 (basal) substituted **3**, have also not been observed. The structures of the cations were fully optimized at the MP2/6-31G* level (Figure 1). The cation **2** was found to be only 1.7 kcal/mol less stable than **3** at the MP4-(SDQ)/6-31G*//MP2/6-31G* level. The ¹³C NMR chemical shifts of **2** and **3** were calculated and are compiled in Table 1.

The 1,2-dimethyl-substituted analogue of 1, that is, 4, was observed⁶ as a long-lived ion and characterized by ¹³C NMR spectroscopy. The 2,4-dimethyl-substituted analogue of 1 was not observed experimentally. The MP2/6-31G* optimized geometry of 4 is similar to that of 1. The GIAO-MP2/3-21G calculated δ^{13} C of the apical carbon of 4 is -25.4, which is very close to the experimental value of δ^{13} C -23.0. However, GIAO-MP2/3-21G calculated δ^{13} C of the basal carbons (82.2, 69.4, and 64.0) slightly deviate from the experimental data (93.7, 73.0, and 61.0). GIAO-MP2 calculations using larger basis sets, however, were not possible. This is because calculations using the ACES II program²³ are presently limited to only to smaller-sized molecules (limits strongly dependent on molecular symmetry).

Trimethyl analogue **5** was also characterized⁷ in superacid solutions by ¹³C NMR spectroscopy. The MP2/6-31G* optimized geometry of **5** is expectedly similar to that of **4**. As in **4**, the GIAO-MP2/3-21G calculated δ^{13} C of the apical carbon of **5** is -21.9, which is very close to the experimental value of δ^{13} C -20.9. GIAO-MP2/3-21G calculated δ^{13} C of the basal carbons of **5** (76.1 and 70.3) also corresponds very closely to the observed experimental values (78.5 and 72.6).

Bishomo Square-Pyramidal Cations. $C_7H_9^+$ **6**. The bishomo square-pyramidal ion **6** was originally prepared by Masamune et al.⁸ in superacid SbF₅–SO₂ClF solution at –110 °C. The MP2/6-31G* optimized structure of **6** is given in Figure 1. We also searched for minimum-energy trishomocyclopropenium-type structure (Scheme 1). At the MP2/6-31G* level the structure is not a minimum on the potential-energy surface of C₇H₉⁺ and converged into structure **6** upon optimization. The parent persistent trishomocyclopropenium ion was also prepared by Masamune et al.²⁶ in superacid solutions and characterized

by ¹³C NMR spectroscopy. The trishomocyclopropenium ion was also studied by an ab initio/IGLO method by Prakash et al.,²⁶ and its highly symmetrical C_{3v} structure was confirmed.

The ¹³C NMR chemical shifts of **6** were calculated by the both IGLO and GIAO-MP2 methods. The IGLO II calculated δ^{13} C of the apical carbon of -36.9 deviates substantially from the experimental value by -17.2 ppm. However, GIAO-MP2/dzp/dz calculated δ^{13} C of the apical carbon of -17.3 is almost the same as the experimental value of -17.2. These comparisons clearly demonstrate the importance of electron correlations in the calculations of the ¹³C chemical shift of the square-pyramidal carbocations. The GIAO-MP2/dzp/dz calculated δ^{13} C of the basal carbon of 40.3 ppm is also found to be very close to the experimental value of 39.4 ppm. With the larger tzp/dz basis set the GIAO-MP2 calculated δ^{13} C of the apical and basal carbons of **6** are -17.0 and 41.9, respectively, which are only slightly different from those of GIAO-MP2/dzp/dz values.

 $C_8H_9^+$, 7 and 8. The $C_8H_9^+$ ion was prepared by Masamune et al.⁹ in superacid solution. Jefford and co-workers²⁷ calculated the ion at the MINDO/3 level. Unlike $C_7H_9^+$, both the bishomo square-pyramidal 7 and the trishomocyclopropenium-type structure 8 were found to be minimum-energy structures on the potential-energy surface of $C_8H_9^+$ at the HF//6-31G* level as confirmed by the frequency calculations at the same level. The structures were further optimized at the MP2/6-31G* level. At the MP2/6-31G*//MP2/6-31G* level 7 is only 0.7 kcal/mol less stable than 8. This difference is reduced to 0.1 kcal/mol at the higher MP4(SDQ)/6-31G*//MP2/6-31G* level. By inclusion of zero-point vibrational energies (ZPE), that is, at the MP4-(SDQ)/6-31G*//MP2/6-31G* + ZPE (at the HF/6-31G*//HF/ 6-31G* level scaled by a factor of 0.89), 7 is only 0.2 kcal/mol more stable than 8. Thus, structures 7 and 8 are almost isoenergetic.

The ¹³C NMR chemical shifts of **7** were calculated by the both IGLO and GIAO-MP2 methods. The IGLO II calculated δ^{13} C of the apical carbon of -48.1 largely deviates from the experimental value by 2.4 ppm. The GIAO-MP2/dzp/dz calculated δ^{13} C of the apical carbon of -28.9 also deviates from the experimental value by 31.3 ppm.

The ¹³C NMR chemical shifts of 8 were calculated at the GIAO-MP2/3-21G level. The calculated δ^{13} C values of 8 are given in Table 1. From calculated chemical shifts of 7 and 8 it seems that the ion 7 might not be the only species involved in superacid solutions. An equilibrium mixture (undergoing rapid exchange on the NMR time scale) (Scheme 2) involving ions 7 and 8 (in 1:2 ratio) can best represent the structure of $C_8H_9^+$. The calculated average chemical shifts (at the GIAO-MP2/3-21G level) of the equilibrating structures of Scheme 2 are depicted in Scheme 3 along with the experimental data obtained at -80 °C (in parentheses). Thus, the calculated δ^{13} C of C1-C4 are 1.5, 29.4, 29.6, and 41.9, respectively, and match very well with the corresponding experimental values of 2.4, 30.4, 29.0, and 41.7. The possibility of structures 7 and 8 in rapid equilibrium is not only indicated from their average chemical shifts but also from their nearly identical energies. In

Figure 2. Plot of calculated vs experimental 13 C NMR chemical shifts of hypercoordinate carbocations **4**–**6**, **9**, and **10**: (a) IGLO DZ vs experimental results; (b) IGLO II vs experimental results; (c) GIAO-MP2/3-21G vs experimental results; (d) GIAO-MP2/dzp/dz vs experimental results.

SCHEME 3

SCHEME 4

fact, such an equilibrium was also suggested by Masamune et al.⁹ $C_8H_9^+$ also showed²⁸ chemical behavior different from that of other related ions.

The relative instability of the ions **7** can also be justified from the molecular-orbital picture. The overlap between the p orbitals of the cap and the p orbitals of the 1,4 cyclohexadiene ring decreases with the bending of the p orbitals away from the cap. Therefore, the good overlap between cap p orbital and 1,4 cyclohexadiene p orbitals in ion **6** is possible because of the right geometry. However, in ion **7**, since the 3,6-positions of the cyclohexadiene moiety is tied (constrained) to a methylene group, the corresponding p orbitals cannot easily bend toward the cap to make a good overlap (Scheme 4; only part of the structures are shown for simplicity).

 C_9H_{11} **9** and C_9H_9 **10**. Both ions **9** and **10** were prepared by Coates et al.¹⁰ in superacid SbF₅-SO₂ClF solutions between -100 and -130 °C. The MP2/6-31G* optimized $C_{2\nu}$ symmetrical structures of **9** and **10** are anticipated to be similar in nature (see Figure 1). Unlike in **7**, in ions **9** and **10** the 3,6positions of the cyclohexadiene moiety are tied to two methylene and two methyne groups, respectively. Thus, p orbitals of the cyclohexadiene moieties of **9** and **10** can bend toward the cap, thus stabilizing the cationic center. However, no minimumenergy trishomocyclopropenium-type structures (Scheme 5) for $C_9H_{11}^+$ or $C_9H_9^+$ could be located. At the MP2/6-31G* level

SCHEME 5

the structures are not minima on the potential-energy surfaces and converged into corresponding pyramidal (i.e., 9 and 10) structures upon optimization.

The GIAO-MP2/dzp/dz calculated δ^{13} C values of the apical carbons of 9 and 10 are -28.6 and -35.6, respectively. These values compare very well with the corresponding experimental results of δ^{13} C -27.9 and -33.6, respectively. Similarly, the GIAO-MP2/dzp/dz calculated δ^{13} C of both basal carbons of **9** and 10 are 38.8 and 38.3, respectively, which also compare very well with the experimental data of 37.7 and 35.3 ppm, respectively.

Chemical-Shift Correlation. Both IGLO and GIAO-MP2 calculated ¹³C NMR chemical shifts of the hypercoordinate carbocations correlate very well with the experimental data (Figure 2). However, only the GIAO-MP2 calculated individual ¹³C NMR chemical shifts are in excellent agreement with experimental results (Table 1) and are clearly superior to the IGLO calculated ¹³C NMR chemical shifts.

Conclusions

We have calculated the structures and ¹³C NMR chemical shifts of a series of hypercoordinate square-pyramidal carbocations that were earlier characterized by ¹³C NMR spectroscopy under long-lived stable ion conditions by ab initio calculations. IGLO calculations with either the DZ or II basis set were found to be only reasonable in reproducing the ¹³C NMR chemical shifts of these ions. However, calculations of ¹³C NMR chemical shifts of these ions with the correlated GIAO-MP2 method showed significant improvements over the chemicalshift results computed at the SCF level (IGLO methods). The calculations suggest that 7 is nearly identical in energy with isomeric ion 8. An almost 1:2 equilibrium mixture of ions 7 and **8** seems to best represent the observed NMR data of $C_8H_9^+$ at -80 °C. The structures and ¹³C NMR chemical shifts for the elusive $(CH)_5^+$ ion 1 and its monomethyl-substituted analogues 2 and 3 were also computed.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

Supporting Information Available: Listing of Cartesian coordinates of the MP2/6-31G* optimized geometries and energies at the MP2/6-31G*//MP2/6-31G* level for 1-10 (4 pages). Ordering information is given on any current masthead page.

References and Notes

(1) Stable Carbocations Part 304. For Part 303, see the following. Olah, G. A.; Shamma, T.; Burrichter, A.; Rasul, G.; Prakash, G. K. S. J. Am. Chem. Soc. 1997, 119, 12923.

(2) Olah, G. A.; Prakash, G. K. S.; Williams, R. E.; Field, L. D.; Wade, K. Hypercarbon Chemistry; Wiley-Interscience: New York, 1987.

- (3) Schwarz, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 991.
- (4) Williams, R. E. Inorg. Chem. 1971, 10, 210.
- (5) Stohrer, W. D.; Hoffmann, R. J. Am. Chem. Soc. 1972, 94, 1661.

(6) Masamune, S.; Sakai, M.; Ona, H.; Kemp-Jones, A. V. J. Am. Chem. Soc. 1972, 94, 8956.

(7) Minkin, V. I.; Zefirov, N. S.; Korobov, M. S.; Averina, N. V.; Boganov, A. M.; Nivorozhkin, L. E. Zh. Org. Khim. 1981, 17, 2616.

(8) Masamune, S.; Sakai, M.; Kemp-Jones, A. V.; Ona, H.; Venot, A.; Nakashima, T. Angew. Chem., Int. Ed. Engl. 1973, 12, 769.

(9) Kemp-Jones, A. V.; Nakamura, N.; Masamune, S. J. Chem. Soc., Chem. Commun. 1974, 109.

(10) Coates, R. M.; Fretz, E. R. Tetrahedron Lett. 1972, 23, 2289.

(11) Hogeveen, H.; Kwant, P. W. Acc. Chem. Res. 1975, 8, 413.

(12) Kollmar, H.; Smith, H. O.; Schleyer, P. v. R. J. Am. Chem. Soc. 1973. 95. 5834.

(13) Dewar, M. J.; Haddon, R. C. J. Am. Chem. Soc. 1973, 95, 5836.

(14) Hehre, W. J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1973, 95, 5837.

(15) Jemmis, E. D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1982, 104, 4781. (16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;

Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.: Pittsburgh, PA, 1995.

(17) Kutzelnigg, W. Isr. J. Chem. 1980, 19, 193.
(18) Schindler, M.; Kutzelnigg, W. J. Chem. Phys. 1982, 76, 1919.

(19) Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR: Basic Princ. Prog. 1991, 91, 651.

(20) (a) Huzinaga, S. Approximate Atomic Wave Function; University of Alberta: Edmonton, Alberta, 1971. (b) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.

(21) Gauss, J. Chem. Phys. Lett. 1992, 191, 614.

(22) Gauss, J. J. Chem. Phys. 1993, 99, 3629.

(23) Stanton, J. F.; Gauss, J.; Watts, J. D.; Lauderdale, W. J.; Bartlett,

R. J. ACES II; Stanton, J. F., Gauss, J., Watts, J. D., Lauderdale, W. J., Bartlett, R. J., Eds.; Quantum Theory Project, University of Florida: Gainesville, FL, 1991.

- (24) Sieber, S.; Schleyer, P. V.; Gauss, J. J. Am. Chem. Soc. 1993, 115, 6987.
- (25) Masamune, S.; Sakai, M.; Kemp-Jones, A. V.; Nakashima, T. Can. J. Chem. 1974, 52, 855.

(26) Prakash, G. K. S.; Rasul, G.; Yudin, A. K.; Olah, G. A. Gazz. Chim. Ital. 1996, 126, 1.

(27) Jefford, C. W.; Mareda, J.; Perlberger, J.-C.; Burger, U. J. Am. Chem. Soc. 1979, 101, 1370.

(28) Hart, H.; Kuzuya, M. J. Am. Chem. Soc. 1974, 96, 6436.